Concentration dependence of vibrational properties of bioprotectant/water mixtures by inelastic neutron scattering.
نویسندگان
چکیده
Neutron scattering has been demonstrated to be a powerful tool for characterizing the structure and dynamics of biological molecules and for investigating the physical and chemical mechanisms of biophysical processes. The aim of the present work is to investigate by inelastic neutron scattering (INS) the vibrational behaviour of a class of bioprotectant systems, such as homologous disaccharides, trehalose, maltose and sucrose, in water mixtures. INS measurements have been performed on trehalose/H2O, maltose/H2O and sucrose/H2O mixtures at very low temperature as a function of concentration by using the thermal original spectrometer with cylindrical analyzers (TOSCA) spectrometer at the ISIS Facility (DRAL, UK). The findings allow the analyses of the vibrational features of the INS spectra in order to study the effect of disaccharides on the H2O hydrogen-bonded tetrahedral network. The obtained neutron scattering findings point out that disaccharides, and in particular trehalose, have a destructuring effect on the water tetrahedral network, as emphasized by the analysis of the librational modes region from 50 to 130 meV energy transfer. On the other hand, the analysis of the bending modes region (130-225 meV) shows a locally ordered structure in the disaccharide/H2O mixtures.Finally, the observed experimental evidences are linked to the different bioprotective effectiveness of disaccharides as a function of concentration.
منابع مشابه
Spectroscopic Study of the Effects of Bioprotectant Systems on the Protein Stability
In the present article the effect of kosmotrope compounds, i.e. systems having the capability to stabilize biological macromolecules, is investigated by using complementary techniques. The attention is focused on the kosmotrope character of trehalose, a glucose disaccharide, compared to its homologous maltose and sucrose. Complementary techniques of neutron scattering, such as Inelastic Neutron...
متن کاملInelastic neutron scattering investigation of hydrating tricalcium and dicalcium silicate mixture pastes: Ca(OH)2 formation and evolution of strength
The hydration of controlled tricalcium and dicalcium silicate mixtures was investigated using inelastic neutron scattering. The amount of Ca(OH)2 produced by each mixture was quantified based on the vibrational mode at approximately 41 meV. The results of compressive strength testing correlate with the amount of Ca(OH)2 produced and with previous results from quasielastic neutron scattering. Th...
متن کاملAnomalies in H2O-D2O Mixtures: Evidence for the Two-Fluid Structure of Water
Recent probing of H2O-D2O mixtures by various means (neutron deep inelastic scattering, Raman absorption, electrical H/D conductivity) revealed an unexpected dependence of the relevant physical quantities on the isotopic composition of the mixture. We show that these observations can find their physical rationale in the context of an approach to the physics of liquid water which takes into acco...
متن کاملابررساناهای دمای بالا- با دید نوترونها
Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC). Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are ess...
متن کاملThe Interaction of Water with Glycine: A Combined Inelastic Neutron Scattering and Raman Spectra Studies
The vibrational dynamics of water around glycine was investigated by using Raman spectroscopy and inelastic neutron scattering. Experiments of deuterated glycine versus deuterium were performed as comparison. The study shows that for glycine, the exchange of proton–deuteron on the active NH+3 side was easy, whereas there was hardly exchange on the CH2 side. Comparing different proportion of gly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2007